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Abstract 

A technique of crystal-thickness estimation and structure- 
factor-modulus restoration (reconstruction) from electron 
diffraction patterns, for use in crystal-structure determi- 
nation, is proposed based on the kinematic scattering 
theory. A criterion for a self-consistent test of the 
restored structure-factor modulus has also been intro- 
duced from the structure-factor statistics developed by 
direct methods for X-ray diffraction. Theoretical tests on 
some structures are successful and show that the 
diffraction intensities are improved to be closer to the 
moduli of the true structure factors. 

I. Introduction 

The techniques of combined high-resolution electron 
microscopy (HREM) with electron diffraction intensity 
have been used for both HREM image deconvolution 
and resolution enhancement (e.g. Ishizuka, Miyazaki & 
Uyeda, 1982; Fan, Zhong, Zheng & Li, 1985; Liu et al., 
1990; Downing, Meisheng, Wenk & O'Keefe, 1990; 
Dong et al., 1992; Hu, Fan & Li, 1992; Zou, Hovmbller, 
Parras, Gonzfilez-Calbet, Vallet-Regf & Grenier, 1993). 
These techniques are very useful in cases when crystals 
are too small for X-ray or neutron diffraction. Nearly all 
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of these studies were for the kinematical condition 
(weak-phase-object approximation) or near the kinema- 
tical condition (pseudo-weak-phase-object approxima- 
tion) (Tang & Li, 1988), that is when electron dynamical 
scattering is not predominant. Under such conditions, the 
phase of the diffracted wave function is replaced by the 
phase of the Fourier transform of the corresponding high- 
resolution electron-microscope image so that the phase 
problem that occurs in X-ray diffraction can be partly 
resolved. 

Although the dynamical-diffraction effect is much 
stronger in electron diffraction than in X-ray diffraction, 
the dynamical perturbations to the diffracted beams are 
expressed as phase distortions before the wave ampli- 
tudes change much from their kinematical values 
(Dorset, Tivol & Turner, 1992). That is to say, the 
electron diffraction intensity is proportional to the square 
of the modulus of the structure factor in a greater range of 
thickness than that for which kinematical diffraction is 
valid. 

A well known formula for the kinematical diffracted 
intensity, neglecting the Lorentz-polarization correction, 
gives the relative intensity as (Vainshtein, 1964; Cowley, 
1988) 

l(g) = IF(g)12[(sinTrsgt)/rCSgt] 2. (1) 
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Here, t is the specimen thickness, g is a reciprocal vector, 
F(g) is the structure factor, Sg is called the excitation 
error, which is equivalent to the distance from the Ewald- 
sphere surface to the reciprocal lattice (see Fig. 1). The 
shape function D(s, t) = (sin rrsgt)/rrsgt has a principal 
maximum of unity. Fig. 2 shows how the square of the 
shape function, DE(x), varies with its argument x. It is 
worth mentioning that for (1) the incident electron beam 
is assumed to be parallel and the specimen is assumed to 
have an infinite-slice shape in the lateral directions so 
that the diffraction spot is a geometrical point. In 
experimental work, this is never true and the intensity 
is distributed around each diffraction spot. Therefore, the 
measured intensity value on the left-hand side of (1) 
should be the integrated intensity. 

In the past, the curvature of the scattering sphere or the 
Ewald sphere, which introduces the shape function, is 
generally ignored while collecting electron diffracted 
intensities either by a microdensitometer or a CCD 
(charge-coupled device) camera (Baldwin & Henderson, 
1984; Zou, Sukharev & Hovm611er, 1993). Because the 
electron wavelength k is very short (0.01 ,~ compared 
with 1 ,~ for X-rays), the radius of the sphere is so large 
that sometimes it is a very good approximation to treat 
the spherical surface as a plane. For example, at 300 kV, 
the spherical radius is more than 50,~ -1, 50 times the 
maximum spatial frequency of the best modem micro- 
scope (1.0 A resolution). Therefore, it seems unnecessary 

Fig. 1. A schematic diagram showing the propagation of an electron 
wave in reciprocal space and in real space (1/k replaced by the slice 
thickness Az). 

to involve any other 'scattering surfaces' than a 
'scattering plane', so the right-hand side of (1) is 
simplified to be just the modulus squared of the 
structure factor. However, at large reciprocal vector 
length, when the crystal is relatively thick, when the 
Laue circle is not centred, when the specimen is not 
correctly oriented, when the incident beam is tilted etc., 
this is an over-simplification. 

For a precise investigation of the structure, especially 
if the techniques involved depend on the measured 
diffracted intensities, such as electron direct methods 
(Dorset, 1992), it will be absolutely necessary to evaluate 
the diffraction data with great care. A small beam spot 
should be used to ensure that the illuminated crystal is 
almost flat; the crystal should be thin enough to use 
kinematical diffraction theory; the curvature of the Ewald 
sphere should be taken into consideration. To correct for 
this curvature, the crystal thickness should be deter- 
mined. Pinsker (1953) introduced a method to determine 
the thickness from the size of the Laue zones. In our 
opinion, its accuracy is in doubt for a normal-size 
inorganic unit cell since only the zero-order Laue zone is 
observable in a principal orientation. However, the shape 
function included in (1) also gives us a chance to extract 
a value of the thickness since, in a simple mathematical 
relationship, the diffraction intensity and the structure 
factor are connected by a factor containing crystal 
thickness information. 

The value of g, which gives DE(sgt)= 80% or 
sgt -- 0.2575 at 300kV, is plotted against the crystal 
thickness in Fig. 3. The figure clearly shows that the 
deviation of the diffraction intensity from the pure 
modulus squared of the structure factor is, in principle, 
negligible when the crystal thickness is less than 25 A 
because all the reflections, which are modified by a factor 
of less than 0.8, locate outside a circle of 1.0A -1 in 
reciprocal space, the best image-mode-information limit 
of a modem electron microscope. However, when the 
crystal is thick, there will be some reflections having 
intensities less than 80% of the square of the structure 
factor, so that the effect of the curvature of the Ewald 
sphere becomes important and can no longer be ignored. 
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Fig. 3. g values that produce D2(sgt)= 80% versus thickness t at 
300 kV. 
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In this paper, the accuracy of diffraction simulation 
with a paraboloidal scattering surface, which is normally 
used in the conventional simulation program, is first 
discussed. The possibility of using (1) and the curvature 
of the scattering sphere to obtain a set of structure-factor 
moduli from the diffraction intensities is then investi- 
gated. The thickness information hidden in the diffrac- 
tion data by the shape function is extracted from the 
diffraction with the help of structure-factor statistics. 
Starting from the theoretical simulated diffraction 
intensities, tests on several structures show that a better 
set of data, which is closer to the structure-factor moduli, 
can be obtained. 

2. The zero and first-order front Fresnel propagator 

In the multislice algorithm for diffraction calculation 
(Cowley & Moodie, 1957; Goodman & Moodie, 1974), 
the effect of the Ewald sphere is implied in the Fresnel 
propagator, which describes the wave propagation for a 
distance of Az, the thickness of a single slice. Apart from 
the near-axis, one of approximations made in obtaining 
this propagator is that of the paraboloidal approximation 
to a sphere: the spherical wave front is replaced by a 
paraboloidal front near the optical axis. This section will 
discuss the difference between a paraboloidal-wave-front 
Fresnel propagator (zero-order approximation) and one 
with a higher-order approximation to a sphere, and then 
estimate the utility of the paraboloidal approximation in 
diffraction calculations when the curvature of the Ewald 
sphere is important. 

All calculations for this paper were made using a slice 
size equal to the length of the crystallographic unit cell. 

2.1. The first-order Fresnel propagator 

Fig. 1 shows a geometrical construction of the wave 
propagation in both reciprocal space and real space. The 
figure is not drawn to scale since 1/~. is much larger than 
any reciprocal vector length g inside the resolution limit 
of a microscope. The phase difference between the wave 
travelling with an angle ot to the axis and the unscattered 
beam going through a distance Az (replacing 1/L for 
real-space display) is 

A~o = (2rr/X)(Az/ coso 0 - (2rr/)~)Az 

= (2zr/~.)Az(1/cosc~ -- 1). (2) 

If ot corresponds to the direction leading to the end of 
g + Sg, 

( c o s ~ )  -1 = (11>,)1(11>, - Sg) 
= [1 - (~.g)2]-1/2 

= 1 + ½(~.g)2 + 3(~.g)4 -Jr O((~.g)6). (3) 

Here, sg=(1/~.){[1-(~.g)2] 1/2} and we suppose 
~.g <<  1, which is generally true for electron micros- 

copy. For example, at 300kV and gmax = 1.0~, -1, the 
maximum 3.g is only 0.0197. Hence, we have the first- 
order Fresnel propagator according to (3) as 

Pl(g) = exp(iAqg) 

-- Po(g) exp(i ~ rr Az~.3 g 4) 

= exp(brAz)~g 2) exp(i 43- 7t'Az~.3g4). (4) 

Po(g) above is the conventional zero-order Fresnel 
propagator used in the conventional multislice algo- 
rithm, where a sperical wave front is replaced by a 
paraboloidal one. Since ~3g4 is very near zero, the first- 
order propagator is also close to the paraboloidal 
approximation. The relative phase difference, when the 
first-order propagator is taken into consideration rather 
than its inferior one, is equal to 3ytA2~.3g4. Despite the 
smallness of this phase difference, enhanced by the 
iteration in the multislice calculation, the diffraction 
could be different while two kinds of propators are 
employed. 

A similar phase difference has also been obtained by 
Kilas, O'Keefe & Krishnan (1987) when they estimated 
the error caused by the excitation error of the higher- 
order Laue-zone reflection. 

2.2. Tests of  the first-order propagator 

The effect of using the first-order Fresnel propagator 
in a multislice simulation algorithm is assessed by 
comparing two diffraction functions calculated with the 
zero and the first Fresnel propagators, respectively. The 
following tests are based on [010] incidence of 
NdSr2NbCu208 (Zandbergen, Cava, Krajewski & Peck, 
1993), which has a similar structure to the high-Tc 
superconductor YBa2Cu307_x with Nb replacing one of 
the three copper atoms and a = b = 3.88, c -- 11.75 .~. 
A voltage of 300kV (~. = 0.0197 A) is employed in this 
and all other tests throughout the paper. The program for 
multislice calculation uses the NAG library for the fast 
Fourier transform. The array size used is 64 x 32, with 
sampling distances of 0.18 × 0.12 ]~. 

In order to estimate the difference from different 
calculations, an R factor is introducted, which is defined 
a s  

R = ~ I111/2 - 121/21/y~/11/2, (5) 

with 11 and 12 the intensities at two corresponding pixels 
from two calculations and the sums over a certain area in 
reciprocal space, denoted Sarea. No scaling factor is 
needed in (5) since diffracted functions are already 
normalized. To estimate the overall effect of the new 
propagator, a circular Sarea will be used while, in order to 
estimate how R changes in reciprocal space, a series of 
annular Sarea is employed instead. Sarea will be expressed 
by its radius if the area is a circle or by two radii if it is a 
ring. 
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Table 1. R factors (%) of diffracted amplitudes simulated 
with zero and first-order Fresnel propagators for 
NdSr2NbCu208 at various thicknesses and in diverse 

circular areas 

Sarea (~-1)  

Thickness 
(,~) 0.830 1.174 1.438 1.660 1.856 2.033 

19.40 0.009 0.010 0.010 0.015 0.019 0.021 
38.80 0.019 0.019 0.024 0.024 0.027 0.031 
58.20 0.020 0.023 0.025 0.032 0.034 0.039 
77.60 0.016 0.022 0.029 0.034 0.040 0.045 

100.88 0.025 0.026 0.030 0.036 0.041 0.046 

Table 2. R factors (%) as in Table 1, 
annular areas 

Sarea (A-1) 

but calculated in 

Thickness 0.000 0.830 1.174 1.438 1.660 1.856 
(,~) 0.830 1.174 1.438 1.660 1.856 2.033 

19.40 0.009 0.011 0.013 0.066 0.113 0.071 
38.80 0.019 0.017 0.051 0.030 0.095 0.140 
58.20 0.020 0.030 0.037 0.128 0.070 0.200 
77.60 0.016 0.042 0.075 0.125 0.214 0.287 

100.88 0.025 0.029 0.062 0.121 0.162 0.283 

For the annular Sarea, to make the calculated R values 
comparable, the areas of individual rings are equal to 
each other. Mathematically, this implies that the radii are 
0 to r0 (the first area is a circle rather than a ring), r0 to 
21/2r0, 21/2r0 to 31/2r0, 31/2r0 to 41/2r0 etc., making each 
area equal to yrr02. In practice, since the diffracted beams 
do not uniformly distribute in reciprocal space, the 
number of reflections in each area will not necessarily be 
identical. A careful choice of r0 is important. Too big an 
r0 would give the R value averaged over too many 
beams, which does not precisely represent the relation- 
ship of R with the reciprocal-space vector length g. On 
the other hand, too small an r0 would lead to R values 
dominated by the accidental error because of too few 
reflections in each ring. We accept an available beam 
number in each ring of about 100, which leads to 
r0 = 0.83 ~-1.  

Diffracted intensities with two propagators Po(g) and 
Pl(g) as defined in (4) at five different specimen 
thicknesses have been computed. The R factors for 
several SareaS are tabulate in Table 1 (circular Sarea) and 
Table 2 (annular Sarea). The general tendency of the R 
factor changing with both the thickness and the radius of 
Sarea is that it increases with an increase in either of them, 
although there are two exceptions at small radii in Table 
1 and the rule is not universal in Table 2. The local 
variation from the general rule comes partly from the 
complexity of dynamical scattering and partly from the 
average over a relatively small number of reflections. It is 
understandable that the increase of thickness results in 
the enhancement of the difference by the repeated use of 

the new propagator, and that the increase of radius in 
reciprocal space includes (more) beams with larger g 
values, which in turn makes the deviation bigger. The 
biggest R factor for the circular Sarea is 0.046% and that 
for the annular one is 0.287%, all at thicknesses over 
70 ,A and with a maximum g over 2.0 k -1 , which are too 
thick for kinematic scattering and larger than the 
resolution limit of the microscope. 

Considering the small R values even for a very thick 
specimen and a very large g value, the zero-order 
paraboloidal approximation to a sphere for the Fresnel 
propagator is generally a very good approximation, 
which will not cause any substantial deviation from a 
higher-order propagator in multislice calculation. 

3. Structure-factor restoration 

According to (1), under the kinematical condition the 
diffracted intensity is related to the modulus of the 
structure factor, and hence it is possible to restore a set of 
structure-factor moduli from the recorded diffraction 
intensities. The results of the calculations discussed in §2 
indicate that, to a very good approximation, the curvature 
of the Ewald sphere is properly included in the 
conventional multislice algorithm by a paraboloidal 
Fresnel propagator, so that it can be safely used in the 
theoretical simulation concerning the curvature. In this 
section, theoretical calculations are performed to test the 
possibility of restoring a structure factor from a set of 
diffraction data. 

3.1. Merit factor M 

It is essential to define a merit factor, which should be 
independent of the investigated structure, thus allowing 
one to determine the thickness using the reverse of (1): 

IF(g)l 2 = l(g)/[(sinzrsst)/Trsgt] 2. (6) 

Putting an arbirary thickness Ztrial in (6) leads to a set of 
possible structure-factor moduli IF'I. If one set of such 
IF'Is is close to the true structure factor IF[, the 
normalized structure factor IE'I should obey some 
statistical relationships (see Giacovazzo, 1980). The 
normalized structure factor is related to the structure 
factor as 

IE(g)l 2 = IF(g)12/~  f ] (g) ,  (7) 

with f the atomic scattering factor for the jth atom in the 
unit cell and the sum is over all atoms in the cell. Some 
statistical averaged values over the whole three-dimen- 
sional reciprocal space for both centrosymmetric and 
noncentrosymmetric structures are given in Table 3. The 
average is expressed as, for example, 

(IEI 2) = ( l /n )  ~ IE(gj)l 2, (8) 
j = l  
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Table 3. The normalized structure-factor statistical average values for both centrosymmetric and non- 
centrosymmetric structures 

IEI IEI 2 IEI 3 IEI 4 IEI 5 [El 6 [IEI 2 - 11 [IEI 2 - 112 

Centrosymmetric 0.798 1 1.596 3 6.383 15 0.968 8.691 
Non-centrosymmetric 0.886 1 1.329 2 3.323 6 0.736 2.415 

with n the number of reflections involved in the 
calculation, which should be infinite if the space is 
inf'mite. In practice, the sum in (8) is rather limited, over 
a finite areas in reciprocal space (denoted Sarea again), so 
that n is a finite number and the average can only be 
approximated. Theoretical values for the averages differ 
quite a lot between centro- and non-centrosymmetrie 
space groups, but are almost equal within all the centro- 
or all non-centrosymmetric space groups. The approxi- 
mations we use are listed in Table 3 (Giacovazzo, 
1980). 

Suppose that from energy-dispersive X-ray micro- 
analysis (EDX) or other measurements the element 
composition of the structure under investigation is 
known, the 'trial' modulus of the normalized structure 
factor IE'I can be calculated from IF'I and the above 
statistical values can then be used as a merit factor to test 
the closeness of IF'I to IFI. The merit factor M is defined 
a s  

7 

m(Ttrial) = Z [N~(Ttria,) - N~I/Nk, (9) 
k=l  

with the sum over all the statistics in Table 3 except 
(IEI 2) -- 1, which will be used for the initial normali- 
zation. N~(Ttrial) are the statistical values calculated from 
one set of IF'[ using thickness Ttrial and Nk the expected 
theoretical values in Table 3. Generally speaking, the 
smaller M(Ttrial) is, the closer IF'[ is to IF[. The 
minimum M(Ttrial) is then considered to correspond to 
the best set of normalized structure factors, the best set of 
structure-factor moduli and the best trial thickness or the 
thickness determined Tdet. The 000 reflection E(0) is not 
recordable and is set to be zero in all the following tests. 

3.2. Sarea and thickness limit 

As in the last section, Sarea is an area in reciprocal 
space for statistical average calculations. In this section, 
only circular areas are used. The largest Sarea is set by the 
microscope, namely the outermost diffraction intensity 
that can be recorded, recognized and digitized. From our 
experience with our Philips CM30-ST-FEG, we know 
that, along a zone axis, diffraction spots can be observed 
up to 1.2A -1 or 0.83,~ resolution in real space. By a 
double recording technique, it is possible to collect 
information up to 1.3 ,~-1 (Zou, Sukharev & Hovmrller, 
1993). It is also possible to record diffraction further out 
by tilting the electron beam and recording several sets of 
data. Therefore, for a zone-axis diffraction pa~ern, it is 
"reasonable to chose the largest Sarea to be 1.2 A -1. 

A larger Sarea always means more reflections are 
included in the statistical average, which certainly leads 
to a better estimation of the closeness of IF'I to IF I. 
However, it should be verified that the thickness is not so 
great that the denominator in (6) turns out to be very 
small or Sgt is close to unity. This will result in a huge 
error and this case should be avoided by setting a 
thickness limit for a given Sarea such that Sgt is less than 
0.95 or D(sgt) is always greater than 0.05. For example, 
because sl.2 = 0.0142 and sl.0 = 0.0099 at 300kV, the 
co~esponding thickness limits are thus about 66 and 
96 A, respectively. All the following tests are performed 
within the thickness limits for an individual Sarea 
according to this criterion. 

In all the following tests, starting from Ttn~ = 0.0, the 
increment of the trial thickness is 2 A until the limit is 
reached. 

3.3 Tests of simple structures 

The simple cubic structures of copper, silicon and 
silicon dioxide (fl-cristobalite) (Wells, 1954), along the 
[001] directions, are used in turn to test the technique of 
structure-factor restoration from diffraction intensity by 
the kinematical approach. Because of the small unit cell 
and the high order of symmetry of these structures, there 
are only a few strong spots in the diffraction patterns 
combined with several extinctions or very weak spots. 
The weak reflections, although they were taken into 
account, will not, or only very slightly, contribute to the 
statistical averages concerning only the power of the 
normalized structure factor (the first six values in Table 
3) but will affect the other two. The array sizes for the 
simulations are 32 × 32 for copper, 64 x 64 for silicon 
and silicon dioxide and the s .a.mplings of the projected 
unit cells are 0.113 by 0.113A, 0.085 by 0.085A and 
0.111 by 0.111 ,~, respectively. 

The SareaS used for these three structures are chosen 
according to the positions of their strong reflections. For 
example, for silicon dioxide, the strong reflections inside 
a circle of 1.2A, -1 are indexed as 220, 400, 440, 620, 800 
and 660, which correspond to 0.399, 0.564, 0.798, 0.892, 

1 1.128 and 1.196A- , respectively. Therefore, SareaS of 
1.20, 1.13 and 0.90]k -1 are applied to this structure. 
Similarly, SareaS are 1.242 1.11 and 0.79.~-1 for copper 
and 1.17, 1.05 and 0.74A -1 for silicon. 

Fig. 4 shows the thickness determined by the 
technique versus the thickness actually used in the 
diffraction calculation (true thickness or Ttrue) for three 
different Sarea S as labelled in the figure for copper. A 
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smaller Sarea of 0.56,~-1 contains only 200 reflections 
and always gives the determined thickness Tdet = 0.0,  
which leads to no improvement so this Sarea is ignored. 

Fig. 5 gives the R factors before (a) and after (b, 
corresponding to Fig. 4) for three SareaS. The former is 
denoted as Ro and the latter as R. Ro represents an R 
factor calculated directly from the diffraction and the 
structure factor and is also equivalent to that obtained 
from a set of restored data with Tde t = 0.0. The R factor 
is defined as 

R ---- ~ IIF(g) l -  klF'(g)l [ / ~  IF(g)l (10) 
g / g  

80" 

.< 
~" 60 
e.- 

._o 40 ¢.. 

I- 

20' 

40" 

Cu thickness determined 

~'~" ,1,24 

0 
0 20 40 60 80 100 
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Fig. 4. The thickness determined by the restoration technique with three 

different SareaS for copper compared with the expected thickness. 

with scaling factor 

k= ~_,lF(g)F'(g)l/~_,lF'(g)l 2. (11) 
g g 

It is clear and impressive from Fig. 5 that the technique 
results in a set of better structure-factor moduli than the 
diffraction itself, with the much improved R factors after 
restoration. 

The estimated thickness is in good agreement with the 
true thickness for all the Sarea s except in the cases where 
the thickness limit is approached or surpassed. For larger 
SareaS, the deviation from the theoretical expected 
diagonal line begins sooner because of its smaller 
thickness limit. Therefore, it is easy to accept the Tde t 
with the smallest possible size. However, it should be 
noted that there are 20 strong reflections within a circle 
with a radius of 1.24 A. -1 , while inside 0.79 ,~-1 there are 
only 8. Apart from the better statisitics, we would also 
like to have as many reflections modified as possible. 
Therefore, to make things more general and more 
accurate, the largest possible Sarea should be chosen 
unless its determined thickness is smaller than that from a 
smaller Sarea with a smaller M(Tdet). 

Accordingly, Fig. 6 shows both (a) the determined 
thickness and (b) Ro and R for silicon. The SareaS used 
have been switched from 1.17 to 1.05,A, -1 around 
Ttru~ = 60A and switched again to 0.74.~, -I around 
80 A true thickness. The switch points are clearly seen in 
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Fig. 5. The R factors (a) before and (b) after restoration for copper. 
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Fig. 6(b) when Ro has a quite different value; these points 
are indicated in Fig. 6(a) by the vertical lines. 

Fig. 7 is another example of simple structure-factor- 
modulus restoration for silicon dioxide. There is no  Sarea 
switch because 1.2,~ -1 gives a bigger, and closer, 
determined thickness than those obtained for 1.13,&-1. 
The Sarea of 0.9,~-1 is ignored since Tdet is always zero 
even though there are still 20 diffraction spots. R and Ro 
are also shown in the figure. The figure gives the results 
beyond the thickness limit (66 A) with far smaller Tde t 
than Ttrue but still with an improved R factor. 

All the above tests are achieved with the non- 
centrosymmetric statistical values, but switching to the 
centrosymmetric statistics did not lead to different Tde t 
and relative M(Tdet) values. 

3.4. Test of a complicated structure 

The restoration of a complicated structure with a large 
unit cell and many more atoms, zeolite-L (A136Si36 o 
K14071) along the [001] direction (Breck, 1974), has 
been investigated. Zeolite-L is hexagonal with 
a =  18.466 and c=7.476 ,~ .  The array size is 
66 x 66a corresponding to a sampling of 0.2798 by 
0.2798A. Because of the large size of the unit cell 
compared with the above simple structures, the diffrac- 
tion patterns contained many significant reflections. 
Within 1.2~k -1 in reciprocal space, there are over 1300 
reflections for the zeolite whereas there are only 28 
reflections for silicon dioxide. Choosing Sarea according 
to the positions of all reflections, a trick used for the 
simple structures to simplify the calculation, is certainly 
not applicable owing to the number of reflections. 
l n s t e a d ,  Sarea is chosen uniformly with the fine 
increment of 0.01 ,~-i, starting from the largest possible 
Sarea until Tde t decreases. Fig. 8 shows such Tde t and 
M(Tdet )  c u r v e s  against the radius of Sarea for 
Ttrue = 37.38,~ (a) and 52.33,~ (b), respectively. Tdet 
ranges from 24 to 96 A for the former and from 44 to 
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Fig. 7. The determined thickness and R factors before (Ro) and after (R) 
restoration for silicon dioxide The thickness region greater than the 
thickness limit is also plotted, where although the determined 
thickness is far less than the expected one the R factor is still 
improved. 

76,& for the latter according to the various radii. 
According to the criterion we used in the last section, 
the TdetS are  44 and 54/k for these two true thicknesses at 
Sarea = 1.18,~-1 because there is no larger Tdet with 
smaller M(Tdet) when Sarea < 1.18,&-1. 

Although with this very fine increment of Sarea and by 
monitoring the change of merit factor M(Tdet), a best Tdet 
and then a best set of IF'I can be picked up, this needs a 
long time and many calculations. Therefore, another 
approach, restricting some strong reflections as outlined 
below, is more appropriate. The scrutiny of Tdet c u r v e s  
suggests that it changes with the radius of Sarea not 
continuously but jumping at certain values. These radii 
correspond to some of the strongest reflections in the 
diffraction pattern. For example, in Fig. 8(a), Tdet curves  
jump at 1.18, 1.08, 0.99 and 0.94 to 0.93,~ -1, which 
correspond to the five strongest reflections 0,19,0, 
10,10,0, 6,12,0, 240 and 6,11,0 in the region from 0.9 
to 1.2 A -1 . At the same positions, M(Tdet) changes more 
or less sharply. The strong reflection with large g value is 
generally disadvantageous, because it either violates the 
kinematical conditions at a smaller thickness than the 
weak reflections (Vainshtein, 1964) or reaches its 
thickness limit earlier than the reflection with smaller g 
value. Excluding it could be better for the technique. A 
possible simplified method for this complicated structure 
could be that only the largest possible radius and those 
radii of Sarea just excluding a strong reflection are used. 
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(a) Ttrue =37 .38A and (b) 52.33A. Tdet does not change 
continuously but jumps step by step at the positions of the strongest 
reflections. 
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Table 4. The determined thickness, its deviation from the 
true thickness, the radius of  Sarea used for obtaining the 
determined thickness, the initial R value and the 
improved R values for 36 to 48 strongest reflections 
within an annular area from 0.4 tk -1 to the correspond- 

ing radius for zeolite-L 

Ttrue (,~k) Tdet (.~,) IT~e- Tcletl Radius ( ~ - l )  Ro (%) R(%) 
14.95 50 (38) 45.05 (23.05) 1.18 (1.20) 1.16 
22.43 48 (34) 25.57 (11.57) 1.18 (1.20) 2.87 
29.90 44 (26) 14.10 (3.90) 1.18 (1.20) 6.60 (4.15) 
37.38 44 6.62 1.18 15.86 6.50 
44.86 48 3.14 1.18 30.01 16.19 
52.33 54 1.67 1.18 36.92 18.58 
59.81 62 2.19 1.08 27.74 8.62 
67.28 62 5.28 0.99 15.47 9.17 
74.76 66 8.76 0.88 21.65 14.78 
82.24 90 7.76 0.81 31.30 18.93 
89.71 106 16.39 0.81 40,71 24.85 

Based on this idea, the selected radii of Sare a for 
Ttrue = 52.33,~ are 0.93, 0.94, 1.00, 0.99, 1.08, 1.18 
and 0.98 ~-1, in order of intensity, and 1.2 ~-1, and the 
recogn_ izable Tde t jumps are at 0.93, 1.0-0.98, 1.08 and 
1.18 ~-1, obeying the rule we have outlined. 

Accordingly, tests here made for different Ttrue from 
14.95 to 89.17A and the result is shown in Table 4. 
When Ttrue ~ 29.90 ~,, the technique gives Tdet far from 
Ttrue, for example Tdet = 48, for Ttrue = 22.43 ,~, with 
error of more than 110%. At the same time. M(Tdet) 

becomes much bigger than others with a small error in 
Tdet, say more than three times. However, this deviation 
is not important either because the experimental 
diffraction from this small-thickness region is difficult 
to obtain or because the crystal is so thin that such 
restoration is not needed, which is clearly shown in Table 
4 by the small Ro value at the small thickness and is also 
indicated in Fig. 3. A slightly better Tdet c a n  be obtained 
using the biggest possible radius of Sarea. These TdetS are 
also shown in Table 4 within parentheses, in which the 
largest possible radius of Sarea of 1.2 ~-1 is used. The 
relative error of Tdet reduces from more than 110 to 52% 
for Ttrue = 22.43 ,~,. The reason for the huge error arising 
from the small thickness will be discussed later. 

The R factors before and after restoration, calculated 
with IE'I rather than IF'l, are also listed in Table 4. 
Several strongest structure factors within an annular area, 
from 0.4 ,~-1 to a radius consistent with one used in Tdet 
calculation and listed in column Radius, have been 
chosen for R calculation. (The overall R factor, full area 
and all the reflections, does not always reduce. The 
reason is not very clear and is being investigated.) The R 
factor is not improved for the two smallest thickness 
values, arising from the huge difference in the 
determined thickness. The effect of dynamical scattering 
is reflected by the increase of Ro with the thickness. 
Despite this inevitable dynamical effect, the R factors are 
greatly reduced. In the best case, the new R factors is less 
than a third of the old one. 

3.5. Test on a structure with relatively heavy elements 

Because of the kinematical condition for the validity of 
(1), structures with only light elements are ideal for 
testing, otherwise the kinematical condition could be 
violated with the increase of thickness. All the above 
test structures are in this category, without an atom 
heavier than copper. In this section, the specimen of 
NdSr2NbCu208 along the [010] direction, which 
contains the medium-heavy elements Nd (Z = 60), Nb 
( Z = 4 1 )  and Sr ( Z = 3 8 ) ,  is once again under 
investigation. Although the unit cell (a = b  = 3.88, 
c = 11.75 A) is not as big as zeolite; because of the 
lower symmetry there are still many reflections with 
significant intensity in the diffraction pattern. Within a 
1.2.~, -1 circle, there are more than 200 reflections, an 
advantage for statistics. 

The procedure used for this material is exactly the 
same as for zeolite-L: only the largest possible g and 
those just excluding one of the strongest reflections are 
chosen to be the radii of Sarea- The huge error in Tde t also 
occurs at the small thickness. It is impossible to improve 
it with the larger Sarea as in the case of zeolite because the 
best Sarea is 1.2,~, -1. However, if we exclude a few 
strongest reflections in the diffraction pattern, which is 
equivalent to increasing the influence of numerous less- 
strong reflections to the statistics, and monitor the change 
of the merit factor, the result is considerably improved. 
For example, for Ttrue = 19.40 A, the new Tdet is 10A 
instead of 36 A. For this specimen, this second cycle of 
calculation only works for Ttrue less than 34 A. Beyond 
this thickness, no further improvement is obtained with 
exclusion of the strongest reflections. 

Fig. 9 shows the determined thickness, the expected 
thickness and the R factors. The second-cYocle calculation 
is included so that the error at Ttrue < 34 A is reasonably 
small. Although there are heavy elements in the structure, 
this technique still gives acceptable Tdet values up to the 
thickness suitable for experiment, although R is not as 
small as that for silicon dioxide in Fig. 7. 

It must be mentioned that the same second-cycle 
calculation has also been applied to zeolite and the 

~ 80 

o 
"5 

60 

*< 4 0  

e- 
~ 20" 
e- 
l--- 

Expected / 

Determ ned ~ ~ " "  .......... --~,~ 

f 
10 30 50 "" 70 90 

True Thickness(A) 
Fig. 9. The curves show the determined thickness, the expected 

thickness and the improvement of  R factors with the different true 
thicknesses for NdSr2NbCu2Os. 



196 ESTIMATION OF CRYSTAL THICKNESS 

simple structures, but no further improvement can be 
made based on the M factor. 

4. Discussion 

The kinematical approach for thickness determination 
and restoration of the structure-factor modulus from 
electron diffraction patterns has been tested and it has 
been shown that it is working under some restrictions. 
Firstly, the function D(sgt) is based on kinematical 
scattering theory and thus the thickness of the specimen 
is limited to near-kinematic conditions. This restricts the 
thickness of the crystal depending on the weight of the 
constituent elements. Secondly, when the crystal is too 
thin, the approach gives rise to a relatively large error in 
the determined thickness and restoration. 

Both small thickness and small Sarea lead to relatively 
large errors. For small Ttrue, the argument of the shape 
function Sgt is near to zero so that the value of the shape 
function is almost unity everywhere. The differences 
among arguments for different trial thicknesses and also 
among these for different reflections at the same trail 
thickness are also close to zero. All of these cause the 
error in thickness determination because, from (6), the 
magnitude of IF'] will not vary prominently if the shape 
function is not very different. 

The differences among arguments are further reduced 
if only small SareaS or small sgs are considered, the small 
Sarea alSO reduces the number of reflections included in 
the statistical calculation, a setback for statistics. There- 
fore, as large as possible an Sarea has been used in the 
above tests as long as the thickness limit permits. 
Theoretically, a smaller Sarea can be used in the thicker 
region where the disadvantages of a small Sarea are 
compensated for by the large thickness value, as shown 
in all the cases above. 

As illustrated in Table 4 for zeolite, where the 
thickness difference I Ttrue - Tdetl has a minimum value 
around Ttrue = 50A, the best thickness estimation is 
made in the region neither too thin nor too thick. The 
large thickness increases the precision of the statistics. 
However, since the technique is based on the kinematical 
condition, an over-thick specimen (where the dynamical 
effect cannot be so simply ignored) will certainly lead to 
a less-reliable result. 

The thickness limit for an individual Sarea owing to an 
over-small value of the shape function fs a disadvantage 
in this technique. If there were no such limitation, Tdet 
could be obtained after only one calculation with the 
largest possible Sarea and with as many reflections as 
possible. An approximation that we tried, setting D(sgt) 
to be, for instance, 0.05 for all the reflections with 
D(sgt) < 0.05 and including them into the statistics so 
that only one Sarea is needed, did not give a successful 
result. A possible experimental solution to the problem 
caused by D(sgt)< 0.05 is perhaps to deliberately 
converge the electron beam a little, causing the shape 

function to be a sum of a few sinc functions with the 
principal maxima locating around Sg -~ O. 111 doing so, 
the minimum value of the new shape function is possibly 
always greater than 0.05. At the same time, (6) must be 
rewritten and the sinc function must be replaced by a 
group of sinc functions. 

Apart from the thickness and the atomic number of the 
constituent elements, another factor affecting the preci- 
sion of the technique is the number of different elements 
in a unit cell. Because the statistics of Table 3 are based 
on a single-element structure, any other elements will 
cause deviations from the theoretical data. Perhaps this is 
why, in the simple structure tests, restoration can be 
achieved for both copper and silicon UPo to 100 ,~ while it 
is only valid for silicon dioxide to 60 A. This restriction 
may be partly counteracted by increasing the number of 
reflections, as in the case of zeolite and NdSr2NbCu208, 
which have four and five different elements, respectively, 
some much heavier than silicon, but can still be 
processed over 60 ,~. 

Unlike the simple structures, only non-centrosym- 
metric statistical values in Table 3 are successfully used 
for both zeolite and NdSr2NbCu208, although their 
structures are centrosymmetric. The structure-factor 
statistics predict that the probability distribution function 
of the magnitude IEI has a maximum either at zero for 
centrosymmetric or at 2 -1/2 for non-centrosymmetric 
structures (Karle, 1972). For the simple structures, 
because the number of reflections is so small, the 
distribution of IE'I has no apparent maximum so that 
both statistics worked. For the other structures we 
encountered, Wilson statistics have been done using the 
NORMAL program (Wilson, 1942; Main, 1985) and the 
distribution of IE[ was then assessed. The distribution of 
IE'I was close to the non-centrosymmetic one so that 
these statistics were more appropriate. 

The remaining question is why only non-centrosym- 
metric statistics are successful while the structures 
investigated have centres of symmetry. The reason is 
not completely clear. The most probable reason is 
perhaps from the statistical error. The average actually 
made is different from the statistical theory in the 
following aspects: there is more than one constituent 
element in the structure; the reflections are not uniformly 
distributed in reciprocal space; the average has been done 
in two dimensions rather than three dimensions etc. All 
of these could lead to the deviation of averages from the 
theoretical values. In fact, in X-ray theory, the statistical 
values given in Table 3 will also deviate slightly from 
different space groups. The question is subject to further 
research. 

Whereas for structures with only low-scattering-power 
elements the scattering is close to kinematical, for 
crystals with heavy elements it is only a rough 
approximation. The kinematical condition is only valid 
for small thickness depending on the weight of the 
composition. However, all the above tests showed that 
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utilization of the kinematical formula can be extended to 
a thickness much beyond the thickness where only 
kinematical diffraction has to be considered, for example 
100,~ for an element as heavy as copper or 70 A for 
crystals with medium-heavy elements like Nd. This is 
because at the first stage of dynamical scattering the 
diffraction amplitude is still close to the structure-factor 
modulus while the phase of it begins to deviate (Dorset, 
Tivol & Turner, 1992), as we mentioned at the beginning 
of the paper. It ensures that the kinematical structure- 
factor restoration is usable to a practical thickness, say 
several nanometres. As mentioned above, the best 
working thickness is neither too thin nor too thick. For 
structures without very heavy elements, this is well 
within the experimentally available region. It is one of 
the most important results of this study that the crystal 
thickness may be estimated from the electron diffraction 
pattern, perhaps with less than 10% error under the best 
conditions for very complicated structures. 

The study reported in this paper is the starting point of 
a more extensive and more realistic study of the 
structure-factor-modulus restoration under dynamical 
conditions, as Dorset (1992) and Sha, Fan & Li (1993) 
have attempted in limited cases previously. The accuracy 
of the method in this kinematical approach is greatly 
restricted by the thickness and the weight of the 
elements. These restrictions will be reduced if the 
dynamical effect is taken into consideration. The 
importance of this study is that the normalized 
structure-factor statistics can be employed for assess- 
ment, which could be a potential future tool under 
dynamical conditions. Tests including the dynamical 
effect are being performed at the moment. 

5. Concluding remarks 

It is possible to estimate the crystal thickness and 
improve the kinematical electron diffraction intensities to 
obtain a set of data closer to the structure-factor moduli 
by dividing them by the square of a sinc-type shape 
function, thus correcting for the curvature of the Ewald 
sphere. 

For theoretical image calculation, the paraboloidal 
approximation to the spherical wave front in the Fresnel 
propagator is generally acceptable, with no more than 1% 
difference even for a relatively thick specimen. 

The theoretical tests show that, at a thickness near 
kinematical conditions (up to 70-100,A,), the specimen 
thickness can be estimated with reasonably small error 
and the diffraction data can be processed to produce a set 
of data closer to the structure-factor modulus even for 

relatively complicated structures and structures with 
medium-heavy elements. 

The thickness determination and the application of the 
structure-factor statistics are two major results of this 
study, which is useful for the future possible dynamical 
scattering correction and the structure-factor restoration 
under dynamical conditions. 

The authors would like to acknowledge the STW for a 
Research Fellowship. 
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